
cba

(Hrsg.):
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 1

Microlog Abstract Execution and State Enumeration

Mario Wenzel1

Abstract: In this paper we describe a method of abstract execution for Microlog programs by
attaching conditions to derived facts. This method is used to enumerate the possible state space of a
Microlog program. The set of states is reduced by considering return values from the environment as
abstract memory positions, possibly collapsing an untenable number of states to just a few.

Microlog is a deductive database language with a strong logic foundation based on Datalog with
calls to external functions that may be used to control sensors and actors. Derived facts and results of
function calls are fed back into the system, creating a thought-act-cycle that allows for programming
of intelligent agents.

Keywords: Datalog; Logic Programming; Microlog; Finite State Machines; Termination.

1 Introduction

We usually prefer declarative logic programming (LP) over imperative programming be-
cause the LP languages have mathematically precise semantics based on logic, which makes
programs easier to verify and programming arguably easier to teach. Even primary school
children can handle deduction-based systems (like Prolog) but struggle with the specifics of
backtracking [Kow82]. As microcontrollers have become very cheap (Arduino, for exam-
ple), they have found their way to hobbyists’ workshops and school and university courses.
When programming for microcontrollers there are usually not enough resources to properly
separate concerns using best-practice frameworks, embedded DSLs, etc., so that we neither
find special LP languages for microcontrollers, nor resource-friendly implementations of
LP languages embedded into C or C++, which are the de-facto standard microcontroller
programming languages. As memory management and debugging on microcontrollers are
difficult problems, non-professionals struggle to create complex programs.

The Microlog language is a Datalog variant with explicit call-semantics to cause side-effects
and collect input interactively. The result (i. e. minimal model) of one deduction phase
is fed back into the system as the extensional database, giving rise to an intentionally
non-terminating2 interactive system. Microlog can be used to express goal-based agents
(Level 3 of 5 on Russell and Norvig’s taxonomy of intelligent agents) [Wen21; RN10].

1 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany
mario.wenzel@informatik.uni-halle.de

2 Microcontrollers, but also servers, usually run and react to external input and actions until they are turned off.

https://creativecommons.org/licenses/by-sa/4.0/
mailto:mario.wenzel@informatik.uni-halle.de

2 Mario Wenzel

In this paper we present a formal framework to execute Microlog programs in an abstract
fashion. We precompute possible “states”, which are sets of Datalog-facts that are true
at a point in time. This does not work for all Microlog programs, because one can write
programs for which the number of facts keeps growing over time. This generalizes our
previous work [WB20] to include negation and therefore allows for more interesting
programs. We also present a heuristic to detect non-termination in this procedure.

We shortly recapitulate the Microlog language, introduce conditional facts and extend the
usual Datalog operations with them. This allows us to define a model of abstract execution.
Finally we show a necessary criterion for non-termination of our procedure, which is
generally undecidable.

2 Microlog Recap

The definition of Microlog presented here differs from the one in previous papers as we
skip explicit timestamping of facts based on the Dedalus0 language [Alv+10]. The syntactic
conversion between both variants is a simple transformation and the resulting program
semantics are isomorphic.

Microlog is an extension of Datalog with stratified negation. A Microlog program is
a finite set of stratifiable rules of the form A← B1 ∧ ·· · ∧Bn, where the head literal A
is a positive atomic formula and the body literals Bi each are either a positive atomic
formulas p(t1, . . . ,tm), negated atomic formulas ¬p(t1, . . . ,tm), or quantifier-free formulas
in some chosen theory of first-order logic3. Terms t are variables, constants of the theory, or
library constants, like HIGH or LOW for the Arduino digital input levels, which are prefixed
with #. Rules must be range-restricted, i.e., all variables that appear anywhere in the rule
must appear also in a body literal with a positive atomic formula. This ensures that all
variables are bound to a value when the rule is applied, and the quantifier-free formulas can
be evaluated.

In order to model information flow through time, we introduce some special predicates and
syntactic rules:

• Predicates prefixed with next_ are only allowed in rule-heads. Any next_p-fact de-
duced becomes a p-fact in the next iteration of the deduction. This allows information
to flow through time. We call rules with such a predicate in the head “inductive rules”.

• For each callable n-ary function f with arguments a1, . . . ,an and an return value r
there exists

– An (n+ 1)-ary predicate ret_f(a1, . . . ,an,r) which is only allowed in rule-
bodies.

3 e. g., Presburger Arithmetic, though the idea is, that one could drop in any theory supported by an attached SMT
solver.

Microlog Abstract Execution and State Enumeration 3

– An n-ary predicate call_f(a1, . . . ,an) which is only allowed in rule-heads.
To have a consistent argument list in the concrete syntax we write it as
call_f(a1, . . . ,an, ?) with a ? for the output positions that are not assigned
a value. Placeholders for invented values have also been used in ILOG [HY90].

Each call_-fact deduced, causes the corresponding function to be called with those
arguments. Though the set-semantics ensures that duplicate calls are eliminated.
i.e., even if there are different ways to deduce the fact, only one call is done. The
arguments and the return value are available for the next iteration of the deduction as
a ret_-fact. A rule with a call_-predicate as its head is called a “call rule”. All call
rules are inductive rules, as they also transport information into the future.

• All other rules are called “deductive rules”.

We define the program semantics in terms of a fixed environment E that contains the results
of all calls to ever be done a priori, as a set of ret_-facts with an additional timestamp
argument, to model impure functions that return different results on subsequent calls (and
have other side-effects in an actual program run). This can be used for a deterministic
and reproducible simulation environment and makes for a clean definition. An actual
microcontroller would just do the appropriate call to the external function with all its
side-effects on demand. For an environment E we define an operation seedE that converts
the next_-facts to their unprefixed versions, and obtains return values for ? in the call_-facts
to convert them to ret_-facts. The first argument to the seed-function is the timestamp for
which to look up the function return values.

seedE (T ,S) ={p(t1, . . . ,tn) | next_p(t1, . . . ,tn) ∈S }∪
{ret_f(a1, . . . ,an,r) | call_f(a1, . . . ,an) ∈S

∧ ret_f(T ,a1, . . . ,an,r) ∈ E }

This call-convention is a combination of action atoms [Bas+10] with its function calls in
the rule head, and the earlier proposal of external atoms [CI05] that allow for pure function
calls in the rule body. Special symbols in the rule head as place holders for invented values
of a logic program have been used in [HY90] to denote fresh identifiers.

We obtain a state for our system using the deductive rules. Through inductive rules some
data, be it from existing facts or calls to external functions, is fed back into the system as
the initial input for the next state deduction.

Definition 1 (Program Semantics). The semantics of the Microlog program P is the
mapping from input facts E (the environment), a set of ret_-facts corresponding to derived
call_-facts, to a sequence of minimal models (or states) 〈S0,S1, . . . ,〉. Let TP(S) be the
stratum-aware fixed-point consequence operator for the program P on the extensional
database S. Then S0 = TP(/0) and Sn = TP(seedE (n,Sn−1)).

4 Mario Wenzel

Definition 2 (Program Behaviour). A program behaviour is the actions performed given an
environment E . This is the sequence of call facts from the program semantics: 〈C0,C1, . . . ,〉
where Cn = {call_f(a1, . . . ,an) ∈Sn}. This is everything that is observable about an actual
program run. We cannot examine the internal state of a program run. This also means that
two programs, independent of their internal state or concrete program code, are indiscernible
iff they behave the same for every environment.

3 Abstract Execution

Naturally, the observable behaviour of a Microlog program depends on an environment
(Definition 2). In this section we will look at the semantics of a Microlog program by
“factoring out” the environment. We want to consider the semantics of the program without
any knowledge of the environment by attaching conditions to facts. This model can later be
used again with a concrete environment to generate a sequence of states.

Consider the program
(i) call_in(?).

(ii) zero← ret_in(0).

We can see that call_in(?) will be in every state. With ret_in(n,0) ∈ E the fact zero will be
in the state Sn (n > 0). It is obvious that any other concrete value for the ? will lead to zero
not being in that particular state. In this case, we can conclude the following equivalence
(which looks – not just coincidentally – very much like rule (ii) of the example program):

zero ∈Sn ⇐⇒ ret_in(n,0) ∈ E

Stepping back further, this equivalence stems from the conditions under which the value
for ? unifies with the value 0 from the rule. Somewhat informally, we can conclude:

zero ∈S ⇐⇒ ? = 0

We will use the formalism of “conditional facts” to model facts with an attached condition.
“Conditional facts” were used by Brass and Dix for characterizing and computing negation
semantics [BD94].

3.1 Conditional Facts

There are a number of input values (substitutions for ?) that are are unknown at “compile
time”. We use special variables to model them. These variables correspond to memory
locations that are used for storing return values of the function calls.

Definition 3 (Parameter Variable). Let V1,V2, . . . be a sequence of pairwise distinct vari-
ables that do not occur in the given Datalog program. We call these “parameter variables”.

Microlog Abstract Execution and State Enumeration 5

Definition 4 (Parameterized Fact). A parameterized fact is a formula of the
form p(t1, . . . ,tm) where each ti is a constant or a parameter variable.

Definition 5 (Condition). A condition ϕ is a consistent (satisfiable) quantifier-free formula.4

Definition 6 (Conditional Fact). A conditional fact is a formula of the form p(t1, . . . ,tm)←
ϕ where ϕ is a condition and p(t1, . . . ,tm) is a parameterized fact.

If the condition ϕ is a tautology, as a shorthand notation we do not write the implication
arrow and condition down. If all conditions are tautologies and no fact contains a parameter
variable, the notation and semantics coincide with normal Datalog. If a fact or state has a
tautology > as its condition, we call it “unconditional”.

Definition 7 (Parameterized State). A parameterized state is a finite set of conditional facts.

Parameter variables have a global meaning in the state: If two parameterized facts in a
state both contain some Vi, they will have the same value. This is a difference to normal
variables in rules, which have only local scope and are limited to a single rule.

Definition 8 (Conditional State). A conditional state S ← ϕ is a finite set of parameterized
facts S and a condition ϕ .

Example 1 (Conditional States Through Parameterized State). Consider the following
parameterized state: {p← V1 < 5,q← V1 > 10,r(V2)}
As the conditions for p and q disagree, for any specific V1 they can not appear together in a
conditional state. r(V2) is unconditional and is therefore in every conditional state.
Through case analysis, we get the following four conditional states, of which one is
inconsistent and can never be obtained through an assignment of the parameter variables:

• {p,q,r(V2)}← V1 < 5∧V1 > 10
• {q,r(V2)}← V1 ≥ 5∧V1 > 10

• {p,r(V2)}← V1 < 5∧V1 ≤ 10
• {r(V2)}← V1 ≥ 5∧V1 ≤ 10

We define the operation cd as a mapping from a set of conditional facts C to a set of condi-
tional states with every possible combination of conditions and their negations. Naively, a
fact exists in the state iff its condition is in the condition for the state in non-negated form.
Note that we are only asking about the existence of a model at every point and are not
interested in specific variable assignments for the parameter variables:

cd(C) = {C ′← ϕ
′ |ϕ ′ = (

∧
ϕ+∧

∧
ϕ−)∧∃M : M |= ϕ

′

∧ϕ+ ∈ 2ϕ ∧ϕ− = {¬c | c ∈ ϕ \ϕ+}
∧ϕ = {c | f ← c ∈ C }
∧C ′ = { f | f ← c ∈ C ∧ c ∈ ϕ+}}

Our oracle or SMT solver deciding ∃M : M |= ϕ ′ could overapproximate or always return
true. This is okay, as at runtime we are deciding which specific state is actually the correct
4 In the chosen theory.

6 Mario Wenzel

state, given a concrete variable assignment. This allows for generally undecidable theories
to be used as well. The only “danger” is, that we are generating actually unreachable states.

3.2 Abstract Rule Application

In this section we will examine rule application using conditional facts in order to construct
a set of reachable states for our Microlog program.

Definition 9 (Unification Condition). Let θ = {X1 7→ Y1, . . . ,Xn 7→ Yn} be a most general
unifier of two literals that does not map parameter variables to variables of the rule (since
the direction of variable-to-variable bindings is arbitrary, this is always possible). Then the
unification condition ϕθ is ϕθ =

∧
{Xi = Xiθ | (Xi 7→ Yi) ∈ θ ,Xi is a parameter variable}.

This is exactly the condition under which this unification succeeds.

Let θE be a mapping from parameter values to actual values from the environment (or
constants from a definition) during an actual run and ϕθ the unification condition for two
literals A and B, then substituting the parameter values in the condition with actual values
from the environment makes the substitution condition true iff unification still succeeds
under this refinement: (Aθ = Bθ)→ ((AθθE = BθθE) ⇐⇒ ϕθ θE)

Definition 10 (Rule Application to Conditional Facts).
Let A← B1∧·· ·∧Bm∧C1∧·· ·∧Cn∧¬D1∧·· ·∧¬Do be a rule, where

• Bi, i = 1, . . . ,m, are ordinary positive literals,
• Ci, i = 1, . . . ,n, are literals with a built-in predicate (i. e., formulas of the chosen theory),
• ¬Di, i = 1, . . . ,o, are ordinary negative literals.

Let B′i ← ϕi, i = 1, . . . ,m, be conditional facts and θ be a most general unifier for
(B1, . . . ,Bm) and (B′1, . . . ,B′m) that does not map parameter variables to variables of the rule.
(B′1, . . . ,B′m) are the facts used in one rule application.

Let B′′i ← ϕ ′i , i = 1, . . . , j, be all conditional facts. Let θ j,o be all 1, . . . , j, 1, . . . ,o most
general unifiers for all {D1θ , . . . ,Doθ} and all {B′′1 , . . . ,B′′j} that do not map parameters to
variables of the rule.
Let Φ := ϕθ∧∧

({ϕi | i = 1, . . . ,m}∪{Ciθ | i = 1, . . . ,n})∧

¬
∨
{ϕ ′i ∧ϕθi,i′

| for each θi,i′ with i = 1, . . . , j, i′ = 1, . . . ,o}

Φ is a conjunction of

1. the unification condition for unification of the positive body literals with respective known
conditional facts,

2. the conditions of all conditional facts used in the rule application,

Microlog Abstract Execution and State Enumeration 7

3. the additional formulas of the rule (using the substitution from the unification), and
4. a negated disjunction that represents all the possible conditions that are sufficient for a fact

to exist, that would make the rule application fail due to a negated body literal.

If Φ is consistent, then the rule application yields Aθ ← ϕ , where ϕ is equivalent to Φ.
Else, the rule application is not possible.

Example 2 (Rule Application). Consider the rule p(X)← q(X)∧ r(X)∧¬s(X)∧X > 5
with the conditional facts {q(V1)← V1 < 7,q(2),r(V2),r(10),s(V3)}. Up to direction of
the variable bindings there are three possible rule instances:

• θ1 = {X 7→ V1,V2 7→ V1} with the substitution condition ϕθ1 = (V2 = V1) and the substi-
tution θ1′ = {V1 7→ V3} for the negation.
The obtained conditional fact is p(V1)← V1 > 5∧V2 = V1∧V1 < 7∧V1 6= V3

• θ2 = {X 7→ 10,V1 7→ 10} with the substitution condition ϕθ2 = (V1 = 10) and ϕθ2′
=

(10 = V3) for the negation. The conditional fact is p(10)← V1 = 10∧10 6= V3∧10 < 7
but as the condition is not consistent, the rule application fails.

• θ3 = {X 7→ 2,V2 7→ 2} with the substitution condition ϕθ3 = (V2 = 2) and ϕθ3′
= (2 = V3)

for the negation. The obtained conditional fact is p(2)← V2 = 2∧2 6= V3∧2 > 5 , which
is inconsistent and the rule application fails.

3.3 Abstract Deduction

We will define the abstract deduction for a program P. using the abstract rule application
we have defined above. We define a consequence operator Ť that works like the usual
stratum-aware fixed-point consequence operator from literature [CGT90] but uses the rule
application from Definition 10 instead of the normal immediate consequence operator. This
means that for any rule application that yields a fact, the operator also adds to the fact the
conditions for 1. unification if a parameter variable is involved, 2. existing conditions of
the facts involved in the rule application, 3. formulas of the rule if they involve parameter
variables, and 4. negated unification conditions for all matching facts for negative body
literals.

Any state Sn is a parameterized state and is identified by a set of parameterized facts, i. e.,
a set of seed-facts S ′

n , which are the initial facts for a state. The initial state is S0 = ŤP(/0).
It has no seed facts as there is no preceding state to cause next_/ret_-facts.

Now let any parameterized state Sn and its seed facts S ′
n be given (for instance, the initial

one). Our goal is to compute the possible successor states. Through case distinction we
will find the possible instantiations (conditional states) of our state Sn. Let the possible
instantiations of Sn be {Sn,1← ϕ1, . . . ,Sn,i← ϕi}= cd(Sn). We get one instantiation for
each consistent valuation of the atomic formulas appearing in the conditions in Sn.

We define an operation seed that returns a set containing

8 Mario Wenzel

• for each next_-fact a fact without the next_-prefix, as above
• for each call_-fact a ret_-fact with a “fresh” parameter variable instead of the return

value indicator “?”. Instead of looking up the return value or doing the actual call, we
introduce a new parameter variable.

Definition 11 (Seed Facts). Let S be a set of parameterized facts, and let

• next_pi(ti,1, . . . ,ti,ki) for i = 1, . . . ,m be all (parameterized) next_p-facts in S , and
• call_fi(ui,1, . . . ,ui,li) for i = 1, . . . ,n be all (parameterized) call_-facts in S .

Then the seed facts seed(S) for the next state are:

• pi(ti,1, . . . ,ti,ki) for i = 1, . . . ,m, and
• ret_fi(ûi,1, . . . ,ûi,li) for i = 1, . . . ,n, where ûi, j is ui, j, unless ui, j is ?, in which case ûi, j is the

first currently unused parameter variable (not occurring in any next_- or call_-facts in S ,
and not substituted already for ? in a previous call_f fact in S or an argument to the left in
the same fact).

The computation of the next state starts with the the seed facts from the previous state,
which are the (parameterized) call_-facts and the next_-facts.

Definition 12 (Successor State). Given an instantiation Sn,i← ϕi of a conditional state Sn
and a condition ϕi the seed for successor state under the condition ϕi is seed(Sn,i) = S ′

m
and the successor state is Sm = ŤP(S ′

m).

We give the following algorithm to enumerate all possible conditional states of a Microlog
program.

1. We calculate S0 using the stratum-aware conditional consequence operator ŤP.
2. Through case distinction cd(S0) we obtain possible instantiations S0,1 ←

ϕ1, . . . ,S0,i← ϕi.
3. We obtain seed facts for possible successor states by applying the seed-function to

the instantiations, yielding new seed-facts: seed(S0, j) = S ′
m

4. We obtain a new parameterized state by application of the consequence operator:
Sm = ŤP(S ′

m)
5. We continue with a case distinction on Sm and repeat until no new states are obtained.

We create a transition function t that maps a set of seed facts and a condition to another
set of seed facts. The full conditional state is always deterministically determined by the
consequence operator. The condition from the case distinction is used to distinguish the
transition taken, given a assignment for the parameter variables. We give a co-recursive
definition for t(s) with s being the seed facts for the (initial) state, i. e., S ′

0 = /0.

t(s) =
⋃
{{(s,ϕi) 7→ seed(si)}∪ t(seed(si)) | si← ϕi ∈ cd(ŤP(s))}

Microlog Abstract Execution and State Enumeration 9

Once an already known state seed is discovered again, this recursive call should stop and
reference the known state instead of continuing. We obtain a transition function like this:

t(S0) = {(S ′
0,ϕ1) 7→ seed(S0,1) = S ′

i

. . .

(S ′
0,ϕn) 7→ seed(S0,n) = S ′

j

(S ′
i ,ϕ...) 7→ . . .

. . .

(S ′
j ,ϕ...) 7→ . . .}

The functions that need to be called upon entering a state are exactly the necessary functions
to obtain values for ? when transforming the next_-facts from the previous state to the
ret_-facts in the seed of the current state.

The “Toggle” program switches the state of an LED when a button is pressed, i. e. pushed
down and released. The light state should switch on the high-to-low transition of the button
state. Checking whether the button is currently pressed is not enough, as this would flicker
the LED’s state while the button is held down. It has the following rules:

(i) call_digitalRead(12,?).
(ii) isPressed← ret_digitalRead(12,#HIGH).

(iii) next_wasPressed← isPressed .
(iv) isReleased← wasPressed∧¬ isPressed .
(v) next_lightOn← isReleased∧¬ lightOn.

(vi) next_lightOn←¬ isReleased∧ lightOn.
(vii) call_digitalWrite(13,#HIGH)← lightOn.

(viii) call_digitalWrite(13,#LOW)←¬ lightOn.

Executing the state enumeration as described (the full example can be found in Appendix A)
we obtain the following possible seeds (and therefore states):

I 7→ {}
II 7→ {ret_digitalRead(12,V1), ret_digitalWrite(13,#LOW)}

III 7→ {wasPressed , ret_digitalRead(12,V1), ret_digitalWrite(13,#LOW)}
IV 7→ {lightOn, ret_digitalRead(12,V1), ret_digitalWrite(13,#LOW)}
V 7→ {lightOn, ret_digitalRead(12,V1), ret_digitalWrite(13,#HIGH)}

V I 7→ {lightOn,wasPressed , ret_digitalRead(12,V1), ret_digitalWrite(13,#HIGH)}
V II 7→ {ret_digitalRead(12,V1), ret_digitalWrite(13,#HIGH)}

The ret_-facts need to be obtained by calling the corresponding function on entry into the
state. This is also a “blueprint” for a possible environment. We obtain the transition function
between states depending on parameter values in the state obtained by function calls:

10 Mario Wenzel

(I,>) 7→ II

(II,V1 = #HIGH) 7→ III

(II,V1 6= #HIGH) 7→ II

(III,V1 = #HIGH) 7→ III

(III,V1 6= #HIGH) 7→ IV

(IV ,V1 = #HIGH) 7→V I

(IV ,V1 6= #HIGH) 7→V

(V ,V1 = #HIGH) 7→V I

(V ,V1 6= #HIGH) 7→V

(V I,V1 = #HIGH) 7→V I

(V I,V1 6= #HIGH) 7→V II

(V II,V1 = #HIGH) 7→ III

(V II,V1 6= #HIGH) 7→ II

It is not surprising that we get 6 states (besides the initial state). We switch the LED on the
#HIGH-#LOW-edge of the button input. We need two bits of information to detect that edge.
Whether the resulting switch of the LED needs to be from #HIGH to #LOW or from #LOW to
#HIGH needs another bit of information (exactly the current state of the LED). With our 6
states we are within the expected size of the state space of no more than 23.

A visualisation of this example can be seen in Figure 1. The parameter variable V1 is
available in all states but I, as all these states contain ret_digitalRead(12,V1) in their seed
facts.

I II III IV

VVIVII

> V1 = #HIGH V1 6= #HIGH

V1 = #HIGHV1 6= #HIGH

ret_digitalWrite(13,#LOW)

ret_digitalWrite(13,#HIGH)

Fig. 1: Visualisation for Abstract Execution of the “Toggle” Program

3.4 Termination of State Enumeration

As there are programs that use an unbounded amount of memory over time, it is clear that
the algorithm above can not terminate for those programs. We call the programs using a
bounded amount of memory over time “convergent”, and otherwise “divergent”. On the
other hand, if the state enumeration algorithm terminates, the number of memory locations
the program uses over time is bounded. The same is true for the number of seed facts. A
bound for either is a proof for program convergence.

Microlog Abstract Execution and State Enumeration 11

Definition 13 (Microlog Program Convergence). A Microlog program P is convergent
iff there exists a number n ∈ N such that for all states Sm and all environments E , the
cardinality of the state is no larger than n. ∃(n ∈ N) ∀(m ∈ N) (|Sm| ≤ n)

Consider the usual termination argument for Datalog programs: The deduction procedure
terminates as there are only a finite number of constants and a finite number of predicates.
Once all constants have appeared in all combinations of positions in all predicates, no new
facts can be obtained. The same is true if you consider a fixed and finite set of parameter
variables in addition to the constants appearing in the program.

Lemma 1. By pigeonhole principle, if the size of the states grows indefinitely over time,
new states must be obtained by an ever-increasing number of new parameter variables, as
possible facts containing a fixed set of constants and parameter variables will be exhausted.
If a state has Sn has m distinct parameter variables, we write this as |Sn|V = m.

Lemma 2. If there exists an infinite number of states, we have an infinite chain of states
where |Sm|V < |Sn|V < .. . and, of course, at least one pair of states (chain of length 2)
where |Sm|V < |Sn|V.
As usual in termination analysis [BN98], if we can give a measure >α in which Sm >α Sn
and there are no infinite decreasing chains in >α , then this is not a problematic pair, as the
operation that leads from Sm to Sn can not be repeated indefinitely.

Definition 14 (Problematic Pair of States). Two states Sm and Sn form a problematic pair
iff |Sm|V < |Sn|V and in the well-founded (partial) order >α Sm >α Sn does not hold.
For such a problematic pair we say Sm ≺Sn.

Theorem 1. Iff a Microlog program is diverging, there exists at least one infinite chain
of reachable states Sm,Sn, . . . where Sm ≺Sn ≺ . . . , as that constitutes an infinite chain
|Sm|V < |Sn|V <

Theorem 2. If for each pair of states |Sm|V < |Sn|V it can be shown that Sm >α Sn, then
there exists no pair Sm ≺Sn (chain of length 2) and therefore no infinite chain either.
Now we define >α for Si >α S j in such a manner, that if we observe “growth” (difference
between sets) from Si to S j, i. e., the potential for an infinite chain, that kind of growth
must be infinitely repeatable. If not, they can not form a part of the same chain. Si >α S j
does hold iff not all of the following hold:

1. The number of facts for each predicate in S j is equal or larger than for the same
predicate in Si.

2. The number of facts for at least one predicate in S j is strictly larger than for the
same predicate in Si.

3. Given a substitution θε that maps all parameter variables to the same special value
ε , Siθε = S jθε . This means that, even in facts were both program constants and
parameter variables occur, growth is only observed in the argument positions with pa-
rameter variables and not in combination with a recombination of program constants,
which would only possible a finite amount of times.5

5 Corresponds to the measure “facts missing until all possible facts without parameter variables are exhausted”.

12 Mario Wenzel

Example 3 (Problematic Pairs).

• {p(V1,V2), p(V1,V3)} 6≺ {p(V1,V2),q(V3,V4),q(V5,V6)} as p-facts can not be removed
indefinitely often (condition 1).

• {p(V1,V1), p(V1,V2)} 6≺ {p(V1,V2), p(V3,V4)} as the arguments, up to renaming, can not
be recombined arbitrarily often (condition 2).

• {p(V1)} 6≺ {p(V1), p(V2),q} as facts without parameter variables can not be added indefi-
nitely (condition 3).

• {p(1,V1)} 6≺ {p(1,V1), p(2,V2)} as facts with different program constants can not be
added indefinitely (condition 3).

• Otherwise: {p(1,V1)} ≺ {p(1,V1), p(1,V2)}, for example.

If during the state enumeration a pair of states fulfils Si ≺S j, the program admits a chain
containing Si,S j. It is possible that Si,S j are part of an infinite chain. That Si ≺S j is
necessary but not sufficient for the existence of such an infinite chain, as Si,S j might be
part of a chain of finite length instead. As this is undecidable in general, we stop the state
enumeration at that point.

4 Conclusion

For space reasons we did not discuss the recovery of the set semantics for the case where
parameter variables are not distinct (a relaxation of Definition 3) or where other equalities
between parameter variables and other constants of the program or library exists.

We have shown that it is possible to execute Microlog programs in an abstract fashion.
States are connected by transitions depending on external input, which is gathered upon
entering a state. The state enumeration algorithm is not terminating for some programs
and that property is undecidable. We have given a necessary criterion for non-termination
which allows us, upon discovery, to stop the enumeration process.

Of course, there must be false positives in that decision procedure. And if the user knows
that the procedure eventually terminates as the critical pairs are not on infinite but on
finite chains of growing states, they can add additional rules to “break the chain”. We
do not have shown that procedure here, but it basically consists of adding distinguishing
nullary predicates between such a problematic pair, breaking condition 3. This can be done
automatically. Of course, for infinite chains this is not possible and would lead to infinitely
many additional nullary predicates.

Once such a state enumeration is complete, we can use finite state machine compilation
techniques in order to compile this program.

Our compiler, as well as further convergent and divergent example programs – like a
Turing machine template – is available at https://dbs.informatik.uni-halle.de/
microlog/.

https://dbs.informatik.uni-halle.de/microlog/
https://dbs.informatik.uni-halle.de/microlog/

Microlog Abstract Execution and State Enumeration 13

References

[Alv+10] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David
Maier, and Russell Sears. “Dedalus: Datalog in Time and Space”. In: Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-
19, 2010. Revised Selected Papers. Ed. by Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Jon Sellers. Vol. 6702. Lecture Notes in Computer Science.
Springer, 2010, pp. 262–281. DOI: 10.1007/978-3-642-24206-9_16.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1998. ISBN: 978-0-521-45520-6.

[Bas+10] Selen Basol, Ozan Erdem, Michael Fink, and Giovambattista Ianni. “HEX
Programs with Action Atoms”. In: Technical Communications of the 26th
International Conference on Logic Programming, ICLP 2010, July 16-19,
2010, Edinburgh, Scotland, UK. Ed. by Manuel V. Hermenegildo and Torsten
Schaub. Vol. 7. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2010, pp. 24–33. DOI: 10.4230/LIPIcs.ICLP.2010.24.

[BD94] Stefan Brass and Jürgen Dix. “A general Approach to Bottom-Up Computation
of Disjunctive Semantics”. In: Non-Monotonic Extensions of Logic Program-
ming (NMELP’94), ICLP ’94 Workshop, Santa Margherita Ligure, Italy, June
17, 1994, Selected Papers. Ed. by Jürgen Dix, Luís Moniz Pereira, and Teodor C.
Przymusinski. Vol. 927. Lecture Notes in Computer Science. Springer, 1994,
pp. 127–155. DOI: 10.1007/BFb0030663.

[CI05] Francesco Calimeri and Giovambattista Ianni. “External Sources of Computa-
tion for Answer Set Solvers”. In: Logic Programming and Nonmonotonic Rea-
soning, 8th International Conference, LPNMR 2005, Diamante, Italy, Septem-
ber 5-8, 2005, Proceedings. Ed. by Chitta Baral, Gianluigi Greco, Nicola Leone,
and Giorgio Terracina. Vol. 3662. Lecture Notes in Computer Science. Springer,
2005, pp. 105–118. DOI: 10.1007/11546207_9.

[CGT90] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and
Databases. Surveys in computer science. Springer, 1990. ISBN: 3-540-51728-6.
URL: http://www.worldcat.org/oclc/20595273.

[HY90] Richard Hull and Masatoshi Yoshikawa. “ILOG: Declarative Creation and
Manipulation of Object Identifiers”. In: 16th International Conference on
Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings. Ed. by Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek.
Morgan Kaufmann, 1990, pp. 455–468. URL: http://www.vldb.org/conf/
1990/P455.PDF.

[Kow82] Robert A. Kowalski. “Logic as a Computer Language for Children”. In: 5th
European Conference on Artificial Intelligence, ECAI 1982, Paris, 1982, Pro-
ceedings. 1982, pp. 2–10.

https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.4230/LIPIcs.ICLP.2010.24
https://doi.org/10.1007/BFb0030663
https://doi.org/10.1007/11546207_9
http://www.worldcat.org/oclc/20595273
http://www.vldb.org/conf/1990/P455.PDF
http://www.vldb.org/conf/1990/P455.PDF

14 Mario Wenzel

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach,
Third International Edition. Pearson Education, 2010. ISBN: 978-0-13-207148-
2. URL: http://vig.pearsoned.com/store/product/1,1207,store-
12521%5C_isbn-0136042597,00.html.

[Wen21] Mario Wenzel. “Expressivity of the Microlog Language”. In: WLP 2021 -
35th Workshop on (Constraint) Logic Programming. 2021. URL: https:
//maweki.de/files/art_wlp21.pdf.

[WB20] Mario Wenzel and Stefan Brass. “Translation of Interactive Datalog Programs
for Microcontrollers to Finite State Machines”. In: Logic-Based Program Syn-
thesis and Transformation - 30th International Symposium, LOPSTR 2020,
Bologna, Italy, September 7-9, 2020, Proceedings. Ed. by Maribel Fernández.
Vol. 12561. Lecture Notes in Computer Science. Springer, 2020, pp. 210–227.
DOI: 10.1007/978-3-030-68446-4_11.

http://vig.pearsoned.com/store/product/1,1207,store-12521%5C_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521%5C_isbn-0136042597,00.html
https://maweki.de/files/art_wlp21.pdf
https://maweki.de/files/art_wlp21.pdf
https://doi.org/10.1007/978-3-030-68446-4_11

Microlog Abstract Execution and State Enumeration 15

A Example Abstract Execution of Toggle Program

(i) call_digitalRead(12,?).
(ii) isPressed← ret_digitalRead(12,#HIGH).

(iii) next_wasPressed← isPressed .
(iv) isReleased← wasPressed∧¬ isPressed .
(v) next_lightOn← isReleased∧¬ lightOn.

(vi) next_lightOn←¬ isReleased∧ lightOn.
(vii) call_digitalWrite(13,#HIGH)← lightOn.

(viii) call_digitalWrite(13,#LOW)←¬ lightOn.

1. The initial state never has ret_-facts, therefore we start with an empty set of
seed facts. We call this state I and we deduce call_digitalWrite(13,#LOW) and
call_digitalRead(12,?) unconditionally and no other fact. We obtain the inductive
facts

{call_digitalRead(12,?), call_digitalWrite(13,#LOW)}

We extract all call_-facts into ret_-facts (replacing all ? by fresh parameter variables)
and next_-facts (none in this case) into their non-prefixed version. This is the
seed-transformation.
The seed for the single subsequent state is {ret_digitalRead(12,V1),
ret_digitalWrite(13,#LOW)}. We call this state II. We obtain the following tran-
sition for our transition function:

(I,>) 7→ II

2. Using the state II seed facts we now we obtain the parameterized state

{ ret_digitalRead(12,V1), ret_digitalWrite(13,#LOW),
call_digitalRead(12,?), isPressed← V1 = #HIGH,
next_wasPressed← V1 = #HIGH, call_digitalWrite(13,#LOW)}

Of course, only the information for the subsequent state is important so that we obtain
the inductive facts

{call_digitalRead(12,?), call_digitalWrite(13,#LOW),
next_wasPressed← V1 = #HIGH}

We do a case distinction over the comparison and obtain the two possible subsequent
conditional states

• {call_digitalRead(12,?), call_digitalWrite(13,#LOW),
next_wasPressed}← V1 = #HIGH, which (after seed-transformation) we call
state III.

16 Mario Wenzel

• {call_digitalRead(12,?), call_digitalWrite(13,#LOW)}
← V1 6= #HIGH, which leads again to state II.

We obtain the following transitions for our transition function:

(II,V1 = #HIGH) 7→ III

(II,V1 6= #HIGH) 7→ II

and we continue with state III.
3. From state III, {ret_digitalRead(12,V1), ret_digitalWrite(13,#LOW),

wasPressed}, we obtain the following possible sets of inductive facts:

• {call_digitalRead(12,?), call_digitalWrite(13,#LOW),
next_wasPressed}← V1 = #HIGH, which leads again to state III
• {call_digitalRead(12,?), call_digitalWrite(13,#LOW),

next_lightOn}← V1 6= #HIGH, which (after seed-transformation) we call state
IV

We obtain the following transitions for our transition function:

(III,V1 = #HIGH) 7→ III

(III,V1 6= #HIGH) 7→ IV

and we continue with state IV.
4. From state IV, {ret_digitalRead(12,V1), ret_digitalWrite(13,#LOW),

lightOn}, we obtain the following inductive facts:

• {call_digitalRead(12,?), call_digitalWrite(13,#HIGH),
next_lightOn, next_wasPressed} ← V1 = #HIGH, which (after seed-
transformation) we call state VI
• {call_digitalRead(12,?), call_digitalWrite(13,#HIGH),

next_lightOn}← V1 6= #HIGH, which (after seed-transformation) we call state
V

We obtain the following transitions for our transition function:

(IV ,V1 = #HIGH) 7→V I

(IV ,V1 6= #HIGH) 7→V

and we continue with state V.
5. From state V, {ret_digitalRead(12,V1), ret_digitalWrite(13,#HIGH),

lightOn}, we obtain the following possible sets of inductive facts:

• {call_digitalRead(12,?), call_digitalWrite(13,#HIGH),
next_wasPressed , next_lightOn,}← V1 = #HIGH, which leads again to state
VI

Microlog Abstract Execution and State Enumeration 17

• {call_digitalRead(12,?), call_digitalWrite(13,#HIGH)}
← V1 6= #HIGH, which leads again to state V

We obtain the following transitions for our transition function:

(V ,V1 = #HIGH) 7→V I

(V ,V1 6= #HIGH) 7→V

6. From state VI, {ret_digitalRead(12,V1), ret_digitalWrite(13,#HIGH),
wasPressed , lightOn}, we obtain the following possible sets of inductive facts:

• {call_digitalRead(12,?), call_digitalWrite(13,#HIGH),
next_wasPressed , next_lightOn} ← V1 = #HIGH, which leads again to state
VI
• {call_digitalRead(12,?), call_digitalWrite(13,#HIGH)}
← V1 6= #HIGH, which (after seed-transformation) we call state VII

We obtain the following transitions for our transition function:

(V ,V1 = #HIGH) 7→V I

(V ,V1 6= #HIGH) 7→V II

7. From state VII, {ret_digitalRead(12,V1), ret_digitalWrite(13,#HIGH)}, we obtain
the following possible sets of inductive facts:

• {call_digitalRead(12,?), call_digitalWrite(13,#LOW),
next_wasPressed}← V1 = #HIGH, which leads again to state III
• {call_digitalRead(12,?), call_digitalWrite(13,#LOW)}
← V1 6= #HIGH, which leads again to state II

We obtain the following transitions for our transition function:

(V I,V1 = #HIGH) 7→ III

(V I,V1 6= #HIGH) 7→ II

State VII is different from state II since in VII we start with the lights turned on,
turning them off, and in state II we start with the light already turned off. Both states
differ in their seed-facts but not in their successor states.

